МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФРАСТРУКТУРЫ И ТЕНОЛОГИЙ

Киевский институт водного транспорта имени гетмана Петра Конашевича-Сагайдачного

Кудрявцев В.Г., Давыдов В.С.

МОРЕХОДНАЯ АСТРОНОМИЯ

3-е издание, переработанное, дополненное

Рекомендовано
Министерством образования и науки Украины
как учебное пособие для студентов высших учебных заведений

Киев Издательство Лира-К 2019 Рекомендовано Министерством образования и науки Украины как учебное пособие для студентов высших учебных заведений

Рекомендовано к печати Ученым советом Государственным университетом инфраструктуры и тенологий

Рецензенты:

В.Г. Алексишин, кандидат технических наук, профессор **Л.Л. Вагущенко,** доктор технических наук, профессор **Л.А. Козыр,** кандидат технических наук, профессор (Одесская национальная морская академия)

Кудрявцев В.Г., Давыдов В.С.

К88 Мореходная астрономия: Учеб. пособ. — Изд. 3, перероб. и доп.— Киев: Издательство Лира-К, 2019. — 380 с.

ISBN 978-617-7748-41-9

В учебном пособии кратко и доступно изложены основные теоретические сведения из сферической геометрии, основ измерения времени, определение поправки компаса и места судна астрономическими средствами. Также приведены состав и правила использования основных астрономических таблиц и инструментов.

С целью более полного усвоения методов решения задач мореходной астрономии в учебном пособии приведены примеры решения основных астрономических задач. В конце каждого раздела приведены задачи и контрольные вопросы, позволяет эффективно использовать пособие для самостоятельного изучения студентами отдельных разделов.

Учебное пособие предназначено для студентов специальности «Судовождение», изучающих курс мореходной астрономии, слушателей курсов переподготовки и повышения квалификации, специалистов морского и речного транспорта. Он также позволяет при минимальном дополнительном использовании морских астрономических таблиц и справочных материалов самостоятельно освоить курс дисциплины «Мореходная астрономия».

УДК 629.5:52](075.8)

[©] Кудрявцев В.Г., Давидов В.С., 2019

СОДЕРЖАНИЕ

<u>лава 1.</u>	Вспомогательная небесная сфера				
	1.1. Определение, основные задачи и краткая история мореходной астрономии				
1.2. Общая характеристика Вселенной					
1.3. Общая характеристика планеты Земля					
1.4.	Вспомогательная небесная сфера: основные точки, линии и плоскости				
Кон	трольные вопросы				
<u>лава 2.</u>	Сферические координаты светил				
2.1.	Общие положения				
2.2.	Горизонтная система сферических координат светил				
2.3.	Первая экваториальная система сферических координат светил				
2.4.	Вторая экваториальная система сферических координат светил				
2.5.	Эклиптическая система сферических координат светил				
2.6.	Изменение сферических координат светил:				
2.0.	2.6.1. Вследствии суточного вращения Земли.				
	2.6.2. Вследствии суточного вращения земли				
	2.6.3. Вследствии перемещения наблюдателя (судна) по поверхности Земли				
	2.6.4. Методика построения вспомогательной небесной сферы для широты конкретного				
	наблюдателя и нанесения на нее светил по их координатам				
	2.6.5. Условия задач для нанесения светил на ВНС и расчета их сферических координат				
	трольные вопросы				
<u>ава 3</u> .	Видимое движение небесных светил				
3.1.					
	3.1.1. Общая характеристика суточного движения звезд				
	3.1.2. Условия восхода и захода небесных светил				
	3.1.3. Условие прохождения небесного светила через зенит наблюдателя				
3.2.	Особенности видимого суточного движения небесных светил				
	3.2.1. Для наблюдателя на экваторе ($\varphi=0^{\circ}$)				
	3.2.2. Для наблюдателя на полюсе ($\varphi = 90^{\circ}$)				
3.3.	Видимое годовое движение Солнца.				
3.3.	3.3.1. Общая характеристика Солнца.				
	3.3.2. Внешние проявления и причины годового движения Солнца				
	3.3.3. Общие явления, обусловленные годовым движением Солнца				
	3.3.4. Явления, связанные с движением Солнца для наблюдателей в различных широтах.				
3.4.	Собственное движение Луны				
	3.4.1. Общая характеристика Луны				
	3.4.2. Характер собственного движения Луны				
	3.4.3. Фазы Луны и ее возраст				
	3.4.4. Лунные и солнечные затмения				
3.5.	Собственное движение планет				
	3.5.1. Общая характеристика планет Солнечной системы				
	3.5.2. Особенности собственного движения планет				
Кон	грольные вопросы				
<u>тва 4.</u>	Основы измерения времени				
4.1.	Время и принцип его измерения				
7.1.	4.1.1. Общие положения				
	4.1.2. Звездное время				
	4.1.3. Солнечное время				
	4.1.4. Единицы измерения времени				
4.2.	Системы счета времени				
	4.2.1. Местное (меридианное) время.				
	4.2.2. Всемирное (гринвичское) время				
	4.2.3. Поясное время				
	4.2.4. Декретное, летнее и судовое время				
4.3.	Демаркационная линия времени				
4.4.					
	4.4.1. Методика определения поправки рабочих часов по сличению с хронометром				
	4.4.2. Задачи на вычисление поправки часов по сличению с хронометром				
	4.4.3. Задачи на вычисление суточного хода хронометра и его поправки				
1.0	4.4.4. Определение всемирного времени.				
	трольные вопросы				
<u>ава 5</u> .	Морской астрономический ежегодник				
5.1.	Построение и содержание МАЕ				
5.2.	Определение по МАЕ часовых углов и склонений звезд				
5.3.	Определение по МАЕ часовых углов и склонений Солнца				

	5.4.	
		планет
		5.4.1. Определение по МАЕ часового угла и склонения Луны
		5.4.2. Определение по МАЕ часовых углов и склонений навигационных планет
		5.4.3. Задачи на вычисление экваториальных координат светил:
		а) Задачи на вычисление экваториальных координат звезды
		б) Задачи на вычисление экваториальных координат Солнца
		в) Задачи на вычисление экваториальных координат Луны
		г) Задачи на вычисление экваториальных координат навигационных планет
	Конт	грольные вопросы
Глава		Параллактический треугольник светила
	6.1.	Основные формулы сферической тригонометрии
	0.11	6.1.1. Параллактический треугольник светила, его элементы
		6.1.2. Основные формулы сферической тригонометрии
	6.2.	Вычисление горизонтных координат светила по таблицам логарифмических функций
	0.2.	«Мореходных таблиц (МТ-75)»
	6.3.	Вычисление высот и азимутов светил по таблицам «ТВА-57»
	0.5.	
		6.3.1. Назначение и устройство таблиц для вычисления высоты и азимута (ТВА-57)
		6.3.2. Методика расчета счислимых высоты и азимута светила по таблицам «ТВА-57»
		6.3.3. Методика расчета счислимых высоты и азимута светила по таблицам «ТВА-52»
		6.3.4. Задачи на вычисление горизонтных координат светил по таблицам «ТВА-57» (ТВА-52)
	6.4.	Вычисление высот и азимутов светил по таблицам «BAC-58»
		6.4.1. Назначение и устройство таблиц «Высоты и азимуты светил (ВАС-58)»
		6.4.2. Методика расчета счислимых высоты и азимута светила по таблицам «ВАС-58»
		6.4.3. Задачи на вычисление горизонтных координат светил по таблицам «ВАС-58» (т. 4)
	Конт	грольные вопросы
Глава		Определение поправки компаса по небесным светилам. Освещенность морского
		горизонта
	7.1.	Определение поправки компаса по небесным светилам
	,.1.	7.1.1. Общие положения
		7.1.2. Определение поправки компаса по Полярной звезде
		7.1.3. Упрощенный способ определения ΔK по Полярной звезде
		7.1.4. Определение поправки компаса по видимому восходу (заходу) Солнца с
		использованием Мореходных таблиц
		7.1.5. Задачи на вычисление поправки компаса (ΔK) по небесным светилам:
		а) Задачи на вычисление поправки компаса (ΔK) по звезде
		б) Задачи на вычисление поправки компаса (ΔK) по Солнцу
		в) Задачи на вычисление поправки компаса (ΔK) по звезде Полярная
		Γ) Задачи на вычисление поправки компаса (ΔK) по-видимому
		восходу или заходу Солнца
	7.2.	Освещенность морского горизонта.
	1.2.	· · · · · · · · · · · · · · · · · · ·
		7.2.1. Общие положения
	T.0	7.2.2. Задачи на вычисление судового времени восхода и захода Солнца
		грольные вопросы
<u>Глава</u>	<u>8.</u>	Звездный глобус. Звездное небо
	8.1.	Звездный глобус
		8.1.1. Устройство звездного глобуса
		8.1.2. Установка звездного глобуса по широте и по звездному местному времени
		наблюдателя
		8.1.3. Определение наименования наблюдавшейся, но визуально неопознанной звезды
		8.1.4. Нанесение на звездный глобус навигационных планет
		8.1.5. Подбор по звездному глобусу звезд для наблюдений
		8.1.6. Определение по звездному глобусу азимута восхода (захода) Солнца
	0.2	8.1.7. Задачи на опознавание звезд по звездному глобусу
	8.2.	Звездное небо
		8.2.1. Классификация звезд
		8.2.2. Созвездия и звезды Северного полушария
		8.2.3. Созвездия и звезды Южного полушария
	Конт	грольные вопросы
Глава		Навигационный секстан. Измерение углов и высот светил
	9.1.	Принцип действия, устройство и правила эксплуатации СНО
		9.1.1. Краткая история навигационного секстана
		9.1.2. Принцип действия навигационного секстана
		9.1.3. Устройство и правила эксплуатации навигационного секстана
	9.2.	Выверки навигационного секстана.
	9.∠.	
		9.2.1. Проверка параллельности оптической оси зрительной трубы плоскости

	азимутального лимба
	9.2.2. Проверка перпендикулярности большого зеркала плоскости азимутального лимба.
	9.2.3. Проверка перпендикулярности малого зеркала плоскости азимутального лимба
9.3.	Определение поправки индекса навигационного секстана
	9.3.1. Общие положения
	9.3.2. Определение поправки индекса секстана по звезде
	9.3.3. Определение поправки индекса секстана по Солнцу
	9.3.4. Контроль точности определения поправки индекса секстана по Солнцу
	9.3.5. Определение поправки индекса секстана по видимому горизонту
0.4	9.3.6. Задачи на вычисление поправки индекса навигационного секстана по Солнцу
9.4.	Измерение высот светил и углов навигационным секстаном
	9.4.1. Измерение высоты звезды
	9.4.2. Измерение высоты нижнего края Солнца
	9.4.3. Измерение горизонтального угла между ориентирами
	9.4.4. Измерение вертикального угла ориентира
Кон	грольные вопросы
тава 10 <u>.</u>	Исправление измеренных высот светил
10.1.	Исправление высот светил, измеренных навигационным секстаном
	10.1.1. Общие положения
	10.1.2. Поправка за наклонение видимого горизонта
	10.1.3. Поправка за астрономическую рефракцию
	10.1.3. Поправка за астрономическую рефракцию
	10.1.5. Поправка за видимый полудиаметр светила
	10.1.6. Расчет истинных высот светил.
	10.1.7. Задачи на исправление высот светил, измеренных навигационным секстаном
10.2.	Частные способы измерения высот светил навигационным секстаном
	10.2.1. Измерение высоты светила способом «через зенит»
	10.2.2. Измерение высоты светила «над урезом воды»
	10.2.3. Измерение высоты светила «в искусственный горизонт»
Кон	грольные вопросы
пава 11.	Основы определения места судна в море методом высотных линий положения
	Навигационная изолиния и линия положения
11.1.	
11.3.	Метод высотных линий положения
	11.3.1. Высотная линия положения и ее элементы
	11.3.2. Определение обсервованных координат места судна на путевой карте
	11.3.3. Расчет обсервованных координат места судна на астрономическом бланке
	11.3.4. Правила определения наименования (знака) $\Delta \varphi$ и $\Delta \lambda$
	11.3.5. Примеры расчета обсервованных координат по элементам ВЛП
	11.3.6. Задачи на расчет обсервованных координат места судна по элементам двух
	высотных линий положения
Кон	грольные вопросы
<i>ава 12.</i>	Определение места судна в море по высотам светил
12.1.	
	Общие положения. Обоснование способа
12.2.	Приведение высот светил к одному зениту
	12.2.1. Общие положения
	12.2.2. Задачи на вычисление поправки за приведение высот светил к одному
	(последнему) моменту при определении места судна по высотам двух звезд
12.3.	Практическое выполнение способа определения места судна в море по высотам двух
	светил (звезд)
	12.3.1. Задачи на вычисление обсервованных координат места судна по высотам двух звезд
	12.3.2. Оценка точности обсервованного (по высотам двух светил) места судна
	12.3.3. Задачи на вычисление радиальной (круговой) СКП обсервованного по высотам
	двух светил) места судна
12.4	
12.4.	Определение места судна в море по высотам Солнца
	12.4.1. Обоснование способа
	12.4.2. Оценка точности счислимо-обсервованного места судна по Солнцу
	12.4.3. Практическое выполнение способа определения места судна по Солнцу
	12.4.4. Задачи на вычисление счислимо-обсервованных координат места судна по
	высотам Солнца
	12.4.5. Задачи на вычисление радиальной (круговой) СКП счислимо-обсервованного (по
	Солнцу) места судна.
Kou	грольные вопросы
пава 13.	
	Определение места судна в море по одновременным наблюдениям 3:4-х светил
13.1.	Общие положения
13.2.	Отыскание вероятнейшего места судна в фигуре погрешности при наличии только
	систематических погрешностей

13.3.	13.3. Отыскание вероятнейшего места судна в фигуре погрешности при наличии только						
10.4	случайных погрешностей						
13.4.	Отыскание вероятнейшего места судна в фигуре погрешности при наличии и систематических и случайных погрешностей						
10.5	систематических и случайных погрешностей						
13.5. Практическое выполнение способа определения места судна в море по высотам тр							
звезд и оценка точности обсервации							
13.6.	Определение места судна в море по высотам 4-х светил						
	13.6.1. Примеры нахождения вероятнейшего места судна в фигуре погрешностей						
	звезд при наличии фигуры погрешностей						
Кон	звезд при наличии фигуры погрешностей						
<u>Глава 14.</u>	1 1						
14.1. Определение широты места судна по высоте Полярной звезды							
	Определение широты места судна по высоте Полярной звезды. 27 14.1.1. Общие положения. 27						
	14.1.2. Практическое выполнение способа						
	14.1.3. Упрощенный способ определения обсервованной широты по высоте Полярной						
	звезды						
	14.1.4. Задачи на вычисление обсервованной широты по высоте Полярной звезды 28						
14.2.	Определение широты места судна по меридиональной высоте светила						
	14.2.1. Общие положения						
	14.2.2. Практическое выполнение способа						
	14.2.3. Задачи на вычисление судового времени верхней кульминации Солнца						
	14.2.4. Задачи на вычисление обсервованной широты места судна по меридиональной высоте Солнца						
14.3.	высоте Солнца						
14.5.	Особенности определения места судна по Солнцу в тропиках (при $n_0 > 88$)						
	14.3.2. Практическое выполнение способа. 29						
Кон	грольные вопросы						
	29 29						
-	е 1. Ежедневные таблицы MAE-2010 (выдержка)						
	е 2. Звезды. Видимые места, 2010 г. (выдержка)						
Приложени	е 3. Азимут Полярной до 2020 г. (выдержка)						
	е 3А. Азимут Полярной на 2010 г. (выдержка)						
	е 4 а) Широта по высоте Полярной, 2010 (I поправка)						
	е 4 б) Широта по высоте Полярной, 2010 (II поправка)						
	е 4 в) Широта по высоте Полярной, 2010 (III поправка)						
приложени	е 5. Таблицы поправок к моментам восхода и захода Солнца и Луны, сумерек и кульминаций светил:						
Припожени	е 5 а) Поправка за широту						
	е 5 б) Поправка за долготу						
-	е 6. Таблицы для исправления измеренных высот светил:						
_	е 6 а) Поправка высоты светила за наклонение зрительного луча						
	е 6 б) Поправка высоты светила за наклонение видимого горизонта						
Приложени	е 6 в) Общие поправки высот нижнего и верхнего края Солнца						
	е 6 г) Поправка высоты звезды или планеты за рефракцию						
-	е 6 д) Дополнительная поправка высоты Венеры и Марса за параллакс						
-	е 6 е) Полудиаметр Солнца						
	е 6 ж) Поправка высоты светила за температуру воздуха						
	е 6 з) Поправка высоты светила за давление воздуха						
	е 6 и) Поправка высоты Солнца за среднюю астрономическую рефракцию и параллакс 33						
	е 6 к) Поправка высоты нижнего края Луны 33 е 6 л) Поправка высоты верхнего края Луны 33						
	е 6 м) Приведение высот к одному зениту						
	е 6 н) Горизонтальный экваториальный параллакс Луны на июнь 2010 г						
-	е 6 о) Изменение высоты светила за одну минуту времени						
	е 7. Таблица для перевода дуговой меры во временную и обратно						
_	е 7 а) Градусы						
	е 7 б) Минуты дуги						
Приложени	е 7 в) Десятые доли минуты дуги						
-	е 8. Основные интерполяционные таблицы (ОИТ) МАЕ (выдержка)						
	е 9. Список звезд по созвездиям (выдержка)						
Приложение 10. Список собственных имен звезд							
Приложени	е 11. Ежедневные таблицы МАЕ-2010 для расчета времени						
Потелен	восхода и захода Солнца (выдержка)						
Приложение 12. Продолжительность гражданских сумерек 34 Приложение 12 а) Склонение Солнца одноименно с широтой места 34							
-	· •						
	6						

Приложение 13. Продолжительность навигационных сумерек	349
Приложение 13 а) Склонение Солнца одноименно с широтой места	349
Приложение 13 б) Склонение Солнца разноименно с широтой места	349
Приложение 14. Азимуты видимого восхода или захода верхнего края Солнца	350
Приложение 14 а) Склонение Солнца одноименно с широтой места	350
Приложение 14 б) Склонение Солнца разноименно с широтой места	350
Приложение 14 в) Разность между азимутами восхода (захода) нижнего и верхнего Краев Солнца	351
Приложение 14 г) Азимут истинного восхода (NE) и захода (NW) светила	352
Приложение 15. Таблица для вычисления высоты и азимута светил (ТВА-52)	353
Приложение 16. Гринвичский часовой угол точки Овна. (до 2020 г.)	367
Приложение 16 а) Гринвичский часовой угол точки Овна на 1990 г. на Т _{ГР} =0	367
Приложение 16 б) Поправка часового угла точки Овна за часы, минуты и секунды	368
Приложение 16 в) Поправка часового угла точки Овна на год наблюдения	368
Приложение 17. Экваториальные координаты навигационных звезд.	369
Приложение 17 а) Звездное дополнение $\tau^* = 360^{\circ}$ - α^*	369
Приложение 17 б) Склонение δ*	370
Приложение 18. Изменение склонения Солнца в течении года	371
Приложение 19. Восход (заход) Солнца в Киеве	372
Приложение 20. Возраст Луны и даты сизигий. Табл. 3.17 «МТ-2000» с. 349	373
Перечень литературы	374
Инструкция по использованию электронного учебника	376

ВВЕДЕНИЕ

Создание и развитие навигационных спутниковых систем во второй половине XX века привело к тому, что уже в конце 90-х годов прошлого века произошла их глобализация, появились практически одновременно в США и Российской Федерации глобальные навигационные спутниковые системы (ГНСС) «NAVSTAR» («GPS») и «ГЛОНАСС» соответственно. Стало возможным вести высокоточное обсервационное счисление практически в любых районах Мирового океана. Это стало причиной вывода из эксплуатации большинства радионавигационных систем среднего и дальнего радиуса действия, которые этому времени практически уже выработали свой технический ресурс.

В настоящее время для большинства районов Мирового океана ГНСС стали единственным средством определения места судна в море. Несмотря на высокую точность и достоверность работы ГНСС это в значительной степени снизило надежность в целом навигационного обеспечения безопасного плавания. В связи с этим значительно возросла роль астрономических способов определения места судна. Кроме того, определение поправок курсоуказателей на судах торгового флота, как и в прежние века, вдали от берегов возможно только по небесным светилам.

Все это свидетельствует о возрастании роли мореходной астрономии, как одной из наук судовождения, в подготовке студентов судоводительской специальности.

Учебное пособие «Практическая мореходная астрономия» разработано соответствии с требованиями отраслевого стандарта Министерства образования и науки Украины по специальности «Судовождение» и предназначено для оказания помощи студентам в изучении дисциплины «Мореходная астрономия». Оно может быть полезным судоводителю и для самостоятельной подготовки при длительных перерывах в использовании методов и способов мореходной астрономии в судовождении. С этой целью учебном пособии, впервые среди пособий подобного типа, наряду с теоретическим материалом приведены методики и примеры решения типовых астрономических задач. В пособие также включены условия контрольных задач с ответами и контрольные вопросы по главам для самостоятельной подготовки по дисциплине и контроля знаний.

При подготовке учебного пособия «Практическая мореходная астрономия» соблюдены традиционная схема последовательности расположения глав и прежние принципы изложения теоретического материала — строгое соответствие действующей программе дисциплины, применение простых для понимания рисунков и схем, доступного аналитического материала. Наличие в пособии выдержек в виде таблиц из астрономических и навигационных пособий позволяет при самостоятельной работе по изучению дисциплины, познать порядок работы с этими таблицами (не обращаясь к ним напрямую), что способствует более глубокому практическому освоению содержания дисциплины «Мореходная астрономия».

Авторы учебного пособия выражают искреннюю благодарность профессорскопреподавательскому составу кафедры «Судовождение и управление судном» Государственного университета инфраструктуры и технологий за советы и пожелания при подготовке третьего издания учебного пособия «Практическая мореходная астрономия». А также декану факультета «Судовождение» Государственного университета инфраструктуры и технологий, кандидату юридических наук, доценту Елеазарову А.П. за активное участие в создании учебного пособия, преподавателю кафедры «Технических систем и процессов управления в судовождении» Настевичу И.Н. за компьютерную вёрстку рукописи пособия.

<u>ГЛАВА 1.</u> ВСПОМОГАТЕЛЬНАЯ НЕБЕСНАЯ СФЕРА

1.1. Определение, основные задачи и краткая история мореходной астрономии

Мореходная астрономия (морская астронавигация) — это часть практической астрономии, рассматривающая ориентировку по небесным светилам во времени, по месту и направлению при движении на море.

Основными задачами мореходной астрономии являются:

- определение места судна в море по небесным светилам;
- определение истинных направлений относительно наблюдаемых небесных светил (определение поправки курсоуказателя « ΔK »);
 - определение, хранение и распространение точного времени;
- оценка естественной освещенности и астронавигационной обстановки в районе плавания.

Астрономическое определение места судна доступно в любом районе плавания и зачастую является единственно возможным и наиболее достоверным. Для его выполнения не нужны береговые сооружения, а точность решения астрономических задач не зависит от расстояний до берега.

Астрономическое определение поправки курсоуказателя (ΔK) является практически почти единственным средством контроля за работой курсоуказателей при плавании вне видимости земных ориентиров.

«Астрономия» — слово греческое (*«астрон»* — звезда и *«номос»* — закон), которое можно перевести как — **«учение о звездных законах»** или **«наука о небесных светилах»**.

О достоинствах этой науки хорошо сказал польский астроном, создатель гелиоцентрической системы Мира **Николай Коперник** (1473÷1543 гг.) в своей книге **«Малый комментарий»**.

«...Из числа многочисленных и разнообразных искусств и наук, пробуждающих интерес и являющихся живительной силой для человеческого разума, по моему мнению, с величайшим жаром следует себя посвятить тем, которые исследуют круг предметов, наиболее прекрасных и наиболее достойных познания.

Таковыми являются науки, которые изучают чудесные обращения во Вселенной и бег звезд, их размеры и расстояния, их восход и заход, а затем объясняют все строение Мира.

А что есть прекраснее, чем небо, охватывающее все, что прекрасно? ...

...Следовательно, если достоинство наук оценивать по их предмету, то, несомненно, первейшей из них была та, которую одни называют **астрономией**, другие – **астрологией**, а многие в прошлом – **вершиной математики**...»

Рассматривать вопросы мореходной астрономии, ничего не сказав об истории астрономии, нельзя и именно об этом говорил и французский астроном **Николя Камиль Фламмарион** ($1842 \div 1925$ гг.):

«...Без истории астрономии мы не можем ничего оценить, ни в истории человечества, ни в истории Вселенной...»

«...Первобытная древность астрономии, происхождение небесной сферы и созвездий, взгляды древних на строение Мира — вся эта научная панорама представляет необъятное зрелище, в котором видна вся душа и жизнь человечества, с его могуществом и бессилием, с лихорадочным любопытством и томлением, с вечным неотступным желанием до всего дойти, все узнать, над всем властвовать...» (Н.К. Фламмарион).

Еще в глубокой древности велись наблюдения звездного неба с целью применения их результатов в сухопутных и морских путешествиях.

- ~ *3 000 лет до н.э.* → именно этим временем датируются первые астрономические записи в Египте, Вавилоне, Китае.
- ~ *1 100 лет до н.э.* → китайский астроном **Чу Конг** построил астрономическую обсерваторию, определил наклон эклиптики к экватору.
- **VI век до н.э.** \rightarrow древнегреческий философ и математик **Пифагор Самосский** (570÷500 гг. до н.э.) уже считал Землю шаром.
- IV век до н.э.

 → древнегреческий астроном и математик Евдокс Книдский (408÷355 гг. до н.э.) создал первую теорию движения планет («планеты прикреплены к вращающимся вокруг Земли концентрическим сферам»). Составил древнейшую карту звездного неба.
- IV век до н.э. → древнегреческий философ **Аристотель** (384÷322 гг. до н.э.) считал, что Вселенная состоит из 55 концентрических сфер, вращающихся с различными скоростями и что в центре Вселенной находится неподвижная шарообразная Земля.
- *IV век до н.э.* \rightarrow китайские астрономы **Гань Гун** и **Ши Шень** «издают» звездный каталог с описанием 800 звезд.
- III век до н.э.
 → древнегреческий астроном и географ Эратосфен Киренский (276÷194 гг. до н.э.) первым измерил дугу меридиана и определил размеры Земли. Оценил (и довольно точно) расстояние от Земли до Солнца и Луны; наклон эклиптики к небесному экватору (23⁰ 51');
- III век до н.э. → древнегреческий астроном Аристарх Самосский (310÷230 гг. до н.э.) считал, что Солнце неподвижно и находится в центре мироздания, а Земля обращается вокруг него и своей оси 1-я гелиоцентрическая система Мира.
- Пвек до н.э. → величайший астроном древнего мира Гиппарх Никейский (180÷125 гг. до н.э.) составил 1-й каталог звездного неба, в котором приводились эфемериды (координаты) 850 звезд. Он же ввел географические координаты, и он же впервые разделил звезды по их блеску на звездные величины (6 классов).
- Пвек н.э. → потомок Александра Македонского, царь Египта (Птолемей Клавдий) (87÷165 гг. н.э.) в «Алмагесте» (~150 г.) изложил древний геоцентрический (ставящий в центр Вселенной Землю) взгляд на Мир. В течении более 14 столетий система Птолемея была основой астрономических вычислений.
- **ХІ век** \rightarrow среднеазиатский ученый **аль-Бируни** (973÷1048 гг.) высказал сомнение в справедливости геоцентрической системы Птолемея.
- **ХV век** \rightarrow **Улугбек (внук Тамерлана)** (1394÷1449 гг.) основал в Самарканде астрономическую обсерваторию, составил звездный каталог на 1018 звезд.
- **1515** г. → польский астроном **Николай Коперник** (1473÷1543 гг.) в своем труде «Малый комментарий» (изд. 1543 г.) изложил гелиоцентрическую систему Мира, по которой в центре Мира находится Солнце.
- **1600 г.** → итальянский ученый Джордано Бруно (1548÷1600 гг.) за свои астрономические мировоззрения (множественность миров) сожжен на костре в Риме на площади Цветов.

- **1610 г.** \rightarrow итальянский ученый **Галилео Галилей** (1564÷1642 гг.) получил важные наблюдательные подтверждения гелиоцентрической системы Мира Коперника (по изменению фаз Венеры). Автор подзорной трубы (от 3^x до 30^x). Открыл 4 спутника Юпитера.
- **1609** г. → немецкий ученый **Иоганн Кеплер** (1571÷1630 гг.) в **«Новой астрономии»** изложил простое и точное описание движения планет (три закона планетных движений).
- 1687 г. → английский математик Исаак Ньютон (1643÷1727 гг.) в «Математических началах натуральной философии», сформулировал закон всемирного тяготения (1666г.), который окончательно объяснил, почему планеты движутся именно так.
- **1692** г. → **1-я астрономическая обсерватория в России** (холмогорский архиепископ Афанасий).
- **1702 г.** → **Яков Вилимович Брюс** (1670÷1735 гг.) открывает в Москве на Сухаревской башне **астрономическую обсерваторию**.
- 1726 г. → открыта астрономическая обсерватория Российской Академии наук.

Возникновение и развитие Мореходной астрономии непосредственно связано с торговлей и мореплаванием. Средства и методы мореходной астрономии складывались веками. Как самостоятельная наука она начала развиваться в эпоху великих географических открытий (XV÷ XVIII вв).

Начиная с 15-го века на судах уже используются астрономические угломерные инструменты — градшток, астролябия, квадрант.

Появляются первые, научно обоснованные, методы определения широты места (по высоте Полярной звезды и по высоте Солнца в полдень).

В 16-м веке появляются теоретические методы определения долготы места.

Именно в это время **Христофор Колумб** (1451÷1506 гг.) так говорил об астрономических определениях места, а именно:

«...Существует только одно безошибочное и надежное определение – это астрономическое ... и счастлив тот, кто с ним знаком...» (~1492 г.).

В России мореходная астрономия получила широкое распространение при **Петре I** (1669÷1725 гг.), который в 1701 г. основал в Москве школу **«Математических и навигацких хитрости наук учения»**, в которой изучается и астрономия.

- **1759 г.** → **М.В.** Ломоносов (1711÷1765 гг.) издает целый ряд работ «Рассуждения о большой точности морского пути»; первым из русских ученых стал вести комплексные исследования по основным проблемам мореплавания.
- 1763 г. → академик Петербургской Академии наук **Леонард Эйлер** (1707÷1783 гг.) изложил метод определения долготы места по лунным расстояниям.
- **1814** г. \rightarrow русский астроном **Ф.И. Шуберт** (1758÷1825 гг.) издает календарь для нужд флота «Карманный месяцеслов» 1-й русский астрономический ежегодник.
- **1839** г. \rightarrow **В.Я.** Струве (1793÷1864 гг.) открывает Пулковскую астрономическую обсерваторию.
- **1843** г. \rightarrow американский моряк **Томас Сомнер** (1807÷1876 гг.) предложил графический метод определения места судна при помощи высотных линий положения на карте.
- 1849 г. → черноморский моряк корпуса флотских штурманов, поручик М.А. Акимов предложил близкое к современному решение задачи совместного определения и широты места и его долготы по высотам светил.

1875 г. → французский капитан **М.** Сент-Илер предложил наиболее простой способ определения места, удобный в судовых условиях (применяется и в наше время).

С XIX века во многих странах выпускают мореходные таблицы.

- *1870 г.* → выпущены первые русские официальные «Мореходные таблицы» «МТ» → до 1903 г. было 10 их изданий.
- 1903 г. \rightarrow гидрографическое управление издало новые «Мореходные таблицы» «МТ», позднее «МТ 33, 43, 53, 63, 75, 2000».

Для решения основной задачи мореходной астрономии – **определения места судна** – применяли, кроме «таблиц логарифмов», «МТ», также и **специальные таблицы**, как русские (Н.Ф. Жамбова, А.В. Асташева, В.Е. Фуса), так и иностранные.

1920÷1921 гг. \rightarrow В.В. Каврайский (1884÷1954 гг.) разработал обобщенный метод высотных линий положения для определения места судна в море по высотам светил.

С **1930** г. под руководством профессора **И.Д. Жанголовича** (1892÷1981 гг.) выпускается **«Морской астрономический ежегодник»** «МАЕ», форма и содержание которого несколько раз изменялись.

Начиная с 30-х годов создаются отечественные навигационные секстаны для измерения высот светил и составляются различные таблицы.

А.П. Ющенко составил 1-е отечественные таблицы для расчета азимутов светил, для определения поправки компаса (ΔK), а также таблицы для расчета элементов высотной линии положения («**ТВА-57**»).

Для целей определения поправки компаса (ΔK) издавались таблицы (К.С. Юрьев, А.П. Демин) – «ТИПС-56».

Главным официальным и более современным пособием для вычисления высот и азимутов светил являются таблицы «**BAC-58**» (I÷IV том).

В области исследований и анализа астрономических определений публиковались работы Н.Н. Матусевича, П.П. Скородумова, А.П. Демина, В.Ф. Дьяконова, В.Т. Кондрашихина и многих других.

Еще в 1922 г. вышел в свет капитальный труд Н.Н. Матусевича (1879÷1950 гг.) «Мореходная астрономия».

В разное время выходили учебники по мореходной астрономии: Б.П. Хлюстин, А.П. Белобров, В.Ф. Дьяконов, Б.И. Красавцев, Р.А. Скубко, Р.Ю. Титов, Г.И. Файн и др.

Среди задач, стоящих перед моряками и учеными в области судовождения, важное место занимает задача совершенствования астрономических определений места судна в море.

Альбицкий В.А. (1891÷1952 гг.)

Амбарцумян В.А. (1908÷1996 гг.)

Барабашов Н.П. (1894÷1971 гг.)

Белопольский А.А. (1854÷1934 гг.)

Бессель Фридрих

Вильгельм (1784÷1846 гг.)

Брадлей Джеймс (1693÷1762 гг.)

Брауде С.Я. (род. в 1911 г.)

Брюс Я.В. (1670÷1735 гг.)

Виноградов А.П. (1895÷1975 гг.) **Воронцов-Вельяминов Б.А.** (1904÷1994 гг.)

- открыл звезду, имеющую самую большую лучевую скорость в Галактике (360 км/с).
- основатель школы теоретической астрофизики.
- сконструировал спектрогелиоскоп.
- в 1887 г. получил фото солнечной короны.
- создал точный звездный каталог для 62.000 звезд.
- доказал аберрацию (1728г.) и нутацию (1748г.) оси Земли.
- составил 1-й каталог космических радиоисточников.
- организовал в 1699 г. «навигационную школу», составил 1-ю карту российских земель.
- определил абсолютный возраст Земли.
- доказал вращение ядра планет.

Гаусс Карл-Фридрих (1777÷1855 гг.) *Гедеонов Д.Д.* (1854÷1908 гг.)

Гершель Вильям (1738÷1822 гг.)

Гинзбург В.Л. (1916÷2009 гг.)

Глазенап С.П. (1848÷1937 гг.)

Гусев М.М. (1826÷1866 гг.) Даламбер Жан (1717÷1783 гг.) Каврайский В.В. (1884÷1954 гг.) Келдыш М.В. (1911÷1978 гг.) Кирик Новгородец (род. ~1110 г.)

Ковальский М.А. (1821÷1884 гг.)

Козырев Н.А. (1908÷1983 гг.) Королев С.П. (1907÷1966 гг.) Красовский Ф.Н. (1878÷1948 гг.) Крылов А.Н. (1863÷1945 гг.)

Лагранж Жозеф (1736÷1813 гг.) **Лаплас Пьер** (1749÷1827 гг.)

Лексель А.И. (1740÷1784 гг.) **Лобачевский Н.И.** (1792÷1856 гг.)

Любимов А.А. (Афанасий) (1641÷1702 гг.)

Ломоносов М.В. (1711÷1765 гг.) Максутов Д.Д. (1896÷1964 гг.) Наан Г.И. (1919÷1994 гг.) Нюрен М.О. (1837÷1921 гг.)

Орлов С.В. (1880÷1958 гг.) Паренаго П.П. (1906÷1960 гг.) Пономарев Н.Г. (1900÷1942 гг.) Румовский С.Я. (1734÷1812 гг.) Савич А.Н. (1811÷1883 гг.) Северный А.Б. (1913÷1987 гг.) Симонов И.М. (1794÷1855 гг.)

Струве Л.О. (1858÷1920 гг.)

Струве О.В. (1819÷1905 гг.)

Тихов Г.А. (1875÷1960 гг.) Фридман А.А. (1888÷1925 гг.) Хайкин С.Э. (1901÷1968 гг.)

- развил теорию движения небесных светил.
- предложил способ определения поправки часов по наблюдениям звезд.
- создатель «звездной астрономии». Открыл планету Уран.
- высказал гипотезу о радиоизлучении короны Солнца.
- инициатор постройки обсерватории
 Петербургского университета в 1881 г.
- создал одну из первых в мире служб Солнца.
- создал общую теорию движения Луны.
- изобрел пеленгатор и наклономер.
- главный теоретик космонавтики.
- в своем труде «Учение им же ведати человеку числа всех лет» (1136 г.) рассмотрел вопрос измерения больших промежутков времени.
- в 1859 г. впервые высказал идею о вращении нашей звездной системы.
- разработал теорию солнечных пятен.
- главный конструктор космических кораблей.
- определил элементы земного эллипсоида.
- восстановил ньютоновскую теорию астрономической рефракции.
- автор теории планетных возмущений.
- создатель теории вероятностей и происхождения Солнечной системы.
- открыл планету Уран.
- пришел к выводу, что геометрия Вселенной определяется распределением вещества в ней и не является Евклидовой.
- первый русский астроном в Холмогорах
- в 1761 г. объяснил наличие атмосферы у Венеры.
- создал новый тип телескопа.
- выдвинул гипотезу симметричности Вселенной.
- в 1885 г. получил значение годичной аберрации звезд (20,49").
- создал теорию строения комет.
- определил галактическую орбиту Солнца.
- конструктор первого отечественного рефлектора.
- ввел точное значение параллакса Солнца (8,67").
- вывел элементы орбиты планеты Нептун.
- открыл пульсации Солнца.
- разработал метод определения местного времени по измеренным высотам светил.
- в 1887 г. впервые получил угловую скорость вращения Галактики.
- в 1841 г. определил значение постоянной прецессии.
- в 1909 г. получил первое фото Марса.
- в 1924 г. предсказал расширение Вселенной.
- основоположник отечественной радиоастрономии.

Цераский В.К. (1849÷1925 гг.)

Цингер Н.Я. (1842÷1918 гг.)

- в 1887 г. построил фотометр. Разработал специальный гелиометр.

изложил оригинальный метод определения поправок часов.

1.2. Общая характеристика Вселенной

А. Наш адрес во Вселенной

Область, край: Метагалактика (система галактик – Сверхгалактика)

Город: Галактика «Млечный путь»

Улица: Солнце **Дом:** Земля.

Б. О количестве

- **Число планет** Солнечной системы **9** (по мере удаления от Солнца **Меркурий, Венера, Земля,** Марс, Юпитер, Сатурн, Уран, Нептун, Плутон). **Не исключается открытие 10-й планеты.**
- **Число видимых невооруженным глазом звез**д на небе ~ *6.000* (до 6-й звездной величины).
- Число звезд в нашей Галактике «Млечный путь» ~ 100 млрд.
- Число галактик в изучаемом пространстве Вселенной \rightarrow более 10 млрд.
- Общее число звезд в изучаемом пространстве Вселенной $\to 10^{21}$.
- Число планет во Вселенной, на которых возможно существование жизни ~ 1 млрд.

В. О размерах

- Земля: $R_{cp} = 6.371,1$ км песчинка в космосе. Масса Юпитера в 318 раз больше массы Земли; масса Плутона ~ в 450 раз меньше массы Земли. На все планеты приходится менее 1/774 массы Солнца.
- Солнце Ø1,39 млн. км, его диаметр вмещает 109 Ø Земли. Масса Солнца ~ в 333.000 раз больше массы Земли. И составляет 99% массы Солнечной системы. $t^{\circ}C$ ядра > 13 млн°. В 1 c сгорает 5 млн. m. водорода.
- *Бетельгейзе сверхгигант. $R* = 400R \odot$ (внутри может поместиться более 1 млн. Солнц или вся орбита Земли);
- ***Белый карлик** ≈ размеру Земли (1 см³ его вещества весит сотни тонн).
- *Пульсар Ø ~ 10 км (чайная ложка его вещества весит ~ 1 млрд. т.).
- *Квазар имеет поперечник ~ 1 световой год. (~ 9461 млрд. км.)
- *Цефая превосходит Солнце более чем в 1млрд. раз по объему.
- Наша Галактика "Млечный путь» имеет поперечник ~ 80.000 световых лет. Масса ее в 100 млрд. раз больше массы Солнца.
- Вселенная $\rightarrow R \sim 13 \div 16$ млрд. световых лет.

Г. О расстояниях

- Длина земного экватора 40.030 км.
- От Земли до Солнца ~ 150 млн. км $(147,1\div152,1$ млн. км.) ~ 3.750 длин земного экватора (свет от Солнца до Земли идет 8 мин 20 с).
- От Земли до ближайшей ***** α Центавра ~ 4,3 световых года (~ 40,68 *трлн. км.*).
- От Земли до ближайшей видимой в наших широтах * Сириус \sim 8,5 световых лет (\sim 80,42 *трлн. км.*).
- От Солнца до центра нашей Галактики ~ 47.000 световых лет.

- До самой близкой к нам галактики Андромеды (МЗ1) ~ 2 млн. световых лет.
- До Квазара «*O Q*172» ~ *10 млрд*. световых лет.
- До ближайшей предполагаемой высокоразвитой цивилизации ~ 1.000 световых лет.
- До края изучаемой Вселенной более 13 млрд. световых лет.

Д. О скоростях

- Земля вращается вокруг своей оси со скоростью ~ $0.5 \, \kappa m/c \, (0.46 \, \kappa m/c)$.
- Земля вращается вокруг Солнца со скоростью ~ 30 км/с. (29,765 км/с).
- Солнечная система вращается вокруг центра нашей Галактики со скоростью ~ 220 км/с. (1 полный оборот за 230 млн. лет).
- **Наша Галактика «Млечный путь»** движется в направлении созвездия Гидры со скоростью ~ 417 км/с.
- Крабовидная туманность расширяется со скоростью ~ 1.500 км/с.
- **Квазар** «OQ172» в созвездии Волопаса удаляется от нас со скоростью, близкой к скорости света ($\sim 300~000~\kappa m/c$).

Примечание:

- 1) **1 а.е.** (астрономическая единица) $\approx 1,49598$ 10⁸ км;
- 2) **1 св. г.** (световой год) $\approx 63,240$ а.е. $\approx 9,46058$ 10^{12} км $\approx 0,3067$ пс.;
- 3) **1 пс.** (парсек) ≈ 206265 а.е. $\approx 3,260515$ св.г. $\approx 3,0857$ 10^{13} км.

Е. О светимости звезд

- Абсолютная светимость Солнца эквивалентна 3.830 млрд. мрлн. 100 вм. эл/ламп. светящих одновременно.
- Светимость наиболее ярких звезд почти в 100 000 раз превышает светимость Солниа.
- *Ригель (созвездие Ориона) излучает света ~ в 60 000 раз более Солнца.
- Количество света, излучаемое сверхновой звездой, может в миллиарды раз превосходить светимость Солнца.
- **Квазары** (~ 1 световой год в поперечнике) **светят ярче, чем 100 нормальных галактик**, состоящих из *1 млрд*. Солнц.
- Одна взорвавшаяся звезда способна светить с такой же силой, как все 100 млрд. звезд в Галактике, вместе взятые.
- Самые слабые известные нам звезды испускают лишь 1/1.000.000 часть излучения Солнца.

Во II веке до н.э. греческий астроном Гиппарх разделил все звезды по их блеску на 6 классов (I – самые яркие, VI – самые слабые).

Видимая звездная величина — это мера того, насколько яркой выглядит звезда на небе. Современная шкала звездных величин определяет, что * І-й звездной величины ровно в 100 раз ярче, чем * VІ-й звездной величины.

Солнце в 10 млрд. раз ярче звезды Сириус (\bigcirc – 26,7, * Сириус –1,6, Венера –3,7).

1.3. Общая характеристика планеты Земля

Наша планета – Земля – видна из космоса как редкий голубой самоцвет.

Третья по счету от Солнца, она самая важная планета для всех нас.

Общая площадь поверхности Земли составляет почти 510 млн. κm^2 (510 072 000 κm^2).

Более 70% поверхности (~ 361,1 млн. κm^2) покрыта водой, которая уникальна в Солнечной системе.

Масса Земли ≈ 6.000 секстиллионов кг (~ 5,974 · 10^{21} m. ≈ 5,974 · 10^{27} г).

Форма Земли немного напоминает грушу. Ее суточное вращение вокруг оси образовало экваториальное вздутие и полярное сжатие.

Геометрически это **геоид** (греч. **«похожий на Землю»**) – геометрическая фигура, которая совпадает со средней поверхностью вод Мирового океана и сообщающихся с ним морей, свободной от приливов, течений и прочих возмущений.

Для упрощения расчетов геоид заменен **земным эллипсоидом** (двухосный **эллипсоид вращения**), который удовлетворяет следующим условиям:

- объем эллипсоида равен объему геоида;
- большая и малая оси эллипсоида соответственно совпадают с плоскостью экватора и осью вращения Земли;
- отклонения поверхности эллипсоида от поверхности Земли минимальны.

Референц - эллипсоид — принятая за основу форма земного эллипсоида в стране (группе стран), наиболее близко совпадающая с геоидом на территории данной страны.

Элементы основных референц – эллипсоидов

(из табл. 2.23. «МТ-2000» с.304)

Таблица 1.1.

	Референц - эл	Большая	Полярное	
	русское название	латинское наименов.	полуось α (м)	сжатие λ
1	Эйри	Airy	6.377.563,396	1/299,3249646
2	Эйри модифицированный	Modified Airy	6.377.340,189	1/299,3249646
3	Австралийский национальный	Australian National	6.378.160	1/298,25
4	Бесселя 1841 г.	Bessel 1841	6.377.397,155	1/299,1528128
5	Кларка 1866 г.	Clarke 1866	6.378.206,4	1/294,9786982
6	Кларка 1880 г.	Clarke 1880	6.378.249,145	1/293,465
7	Эвереста	Everest	6.377.276,345	1/300,8017
8	Эвереста модифицированный	Modified Everest	6.377.304,063	1/300,8017
9	Фишер 1960 г.	Fischer 1960	6.378.166	1/298,3
10	Фишер 1968 г.	Fischer 1968	6.378.150	1/298,3
11	Геодезическая референц- система 1980 г.	Geodetic Reference System 1980	6.378.137	1/298,257222101
12	Гельмерта 1906 г.	Helmert 1906	6.378.200	1/298,3
13	Хьюга	Hough	6.378.270	1/297
14	Международный	International	6.378.388	1/297
15	Красовского	Krassovsky	6.378.245	1/298,3
16	Южно-американский 1969 г.	South American 1969	6.378.160	1/298,25
17	Всемирная геодезическая система 1960 г.	WGS-60	6.378.165	1/298,3
18	Всемирная геодезическая система 1966 г.	WGS-66	6.378.145	1/298,25
19	Всемирная геодезическая система 1972 г.	WGS-72	6.378.135	1/298,26
20	Всемирная геодезическая система 1984 г.	WGS-84	6.378.137	1/298,257223563

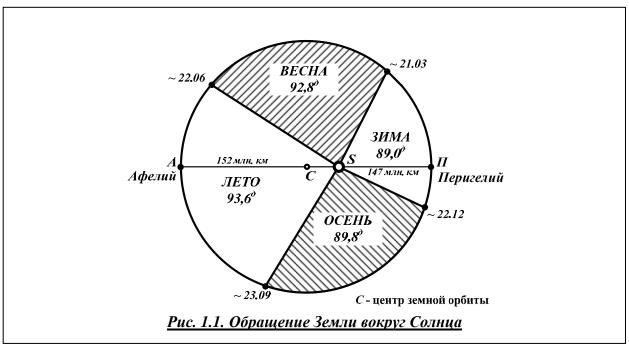
Размеры референц - эллипсоида Красовского:

a = 6378245 м – большая полуось (длинна экватора ~ 40.076 км);

- $\mathbf{g} = 6 \ 356 \ 863 \ m$ малая полуось;
- $\alpha = 1.298,3$ полярное сжатие (0,0033523299);
- e = 0.0818133 -эксцентриситет.

Отклонение от поверхности геоида не более 150 м.

Большая и малая полуоси отличаются на ~ 21,4 км (21,38 км).


Среднее значение радиуса Земли: $R_{cp} = 6.371,11$ км. Длина экватора: 40.031 км.

Астрономы предполагают, что Земля образовалась ~ **4,6 млрд.** лет назад из газопылевого облака.

Земля обладает магнитным полем, которое простирается в космос на расстояние до *60.000 км* и полностью улавливает смертоносные частицы «солнечного ветра».

В соответствии с законами Иоганна Кеплера (1571÷1630 гг.) Земля обращается вокруг Солнца с переменной скоростью ($V_{cp} \approx 30$ км/с) по слегка вытянутому эллипсу (рис. 1.1).

Ближе всего к Солнцу Земля подходит в начале января (т. Π – перигелий), когда в Северном полушарии царит зима, которая теплее, чем в Южном полушарии ($S_n \approx 147,1$ млн. км).

Дальше всего от Солнца Земля отходит в **начале июля** (т. A – афелий), когда у нас лето, которое прохладнее, чем в Южном полушарии ($S_A \approx 152,1$ млн. км).

Разница в удалении Земли от Солнца между январем и июлем составляет около **5** млн. км.

Среднее расстояние от Земли до Солнца оценивается в 150 млн. км (~149,598 млн. км) = 1 а.е. (астрономическая единица).

Большая полуось земной орбиты: a = 149,60 млн. км.

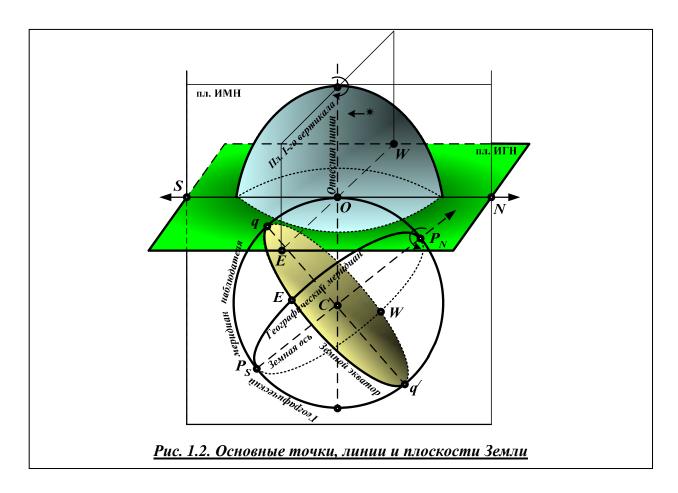
Причина смены времен года кроется в наклоне земной оси.

Ось вращения Земли расположена под углом ~ 66°33' к плоскости ее движения вокруг Солнца. На Земле различают **5 климатических поясов**:

- экваториальный или тропический ($23^{\circ}27'N \div 0^{\circ} \div 23^{\circ}27'S$);
- -2 умеренных пояса (23°27'N÷66°33'N; 23°27'S÷66°33'S);
- -2 полярных пояса (66°33'N÷90°N; 66°33'S÷90°S).

Можно принимать, что ось вращения Земли перемещается в пространстве всегда параллельно самой себе. На самом деле ось вращения Земли описывает на небесной сфере малый круг, совершая один полный оборот за 25.800 лет.

Это интересно знать:


- 1. Самый большой континент Евразия (54,5 млн. κM^2).
- 2. Самый большой материк Азия (**44 млн. км²**).
- 3. Самый большой океан Тихий океан (**179,7 млн. км²**).
- 4. Самой большое море Коралловое (**4,8 млн. км**²).
- 5. Самое большое озеро Каспийское море (**371 000 км**²).
- 6. Самая длинная река река Амазонка (6 992 км).
- 7. Самая высокая гора гора Эверест (Джомолунгма) (8 848 м).
- 8. Самая большая впадина суши Мертвое море (-392 м).
- 9. Самое большое ущелье ущелье Большой Каньон, США, штат Аризона (L = 349 км, B = до 21 км, H = до 1,6 км).
- 10. Самое глубокое ущелье ущелье Хелс Каньон, США, штат Айдахо (H = 2.408 м).
- 11. Самый большой метеоритный кратер кратер Нью Куэбек, Канада (B = до 3 км).
- 12. Самый крупный водопад водопад Анхель (1.054 м).
- 13. Самая большая глубина в море глубина в Марианской впадине Тихого океана **(11 022 м)**.
- 14. Самое влажное место г. Вайалеале, Гавайские острова (среднегодовое количество осадков **11 680 мм**).
- 15. Самое сухое место пустыня Атакама, Чили (в Каламе осадков не было вообще).
- 16. Самое холодное место станция «Восток», Антарктида (–**89,2**°C **21.07.1983 г.**). И центр Антарктиды (**93,2**°C **10.08.2010 г.**)
- 17. Самое жаркое место г. Эль-Азизийя, Ливия (+**58**°C **IX.1922** г.). И Пустыня около Ирана (+**70,7**°C **2005** г.)
- 18. Самый сильный ветер **372 км/ч** (1934 г.).
- 19. Самые высокие приливы залив Фанди, Канада (18 м).

1.4. Вспомогательная небесная сфера: основные точки, линии и плоскости

Прежде чем говорить о вспомогательной небесной сфере (ВНС), вспомним основные точки, линии и плоскости земной сферы, приняв Землю за шар и, пренебрегая ее сжатием, т.к. большая и малая полуоси земного эллипсоида отличаются всего на 0,3% радиуса Земли.

Произвольным радиусом проведем окружность с центром в т. C – центр Земли (рис. 1.2).

- **земная ось** $(P_N P_S)$ воображаемая линия, проходящая через центр Земли т. C и географические полюсы Земли P_N северный и P_S южный; именно вокруг этой оси Земля совершает один оборот за 24 часа с запада на восток;
- *плоскость земного экватора* \rightarrow плоскость проходящая через центр Земли (т. C) перпендикулярно земной оси P_NP_S (делит земной шар на два полушария северное и южное);
- *земной экватор* воображаемая линия пересечения плоскости экватора с земной поверхностью (qEq'W);
- *географический меридиан* воображаемая линия пересечения поверхности Земли, плоскостью проходящей через географические полюсы Земли P_N и P_S ;
- ucmuhh b u mepuduah haблюдателя географический меридиан, проходящий через место наблюдателя т. O;
 - *отвесная линия* → воображаемая линия, проходящая через центр Земли (т. C) и место наблюдателя (т. O) линия OC;

- *плоскость истинного горизонта* \rightarrow плоскость, проходящая через место наблюдателя (т. O) перпендикулярно отвесной линии OC;
- *плоскости вертикалов* \rightarrow плоскости, проходящие через отвесную линию *OC* перпендикулярно плоскости истинного горизонта наблюдателя (и.г.н.);
- *плоскость І-го вертикала* вертикальная плоскость перпендикулярная и плоскости истинного горизонта наблюдателя (и.г.н.), и плоскости истинного меридиана наблюдателя (и.м.н.);
- **полуденная линия** воображаемая линия *NS*, по которой плоскость истинного горизонта пересекается с плоскостью истинного меридиана наблюдателя. Полуденная линия соответствует направлениям из места наблюдателя на север (N) и юг (S);
- **линия** EW воображаемая линия, по которой плоскость I-го вертикала пересекается с плоскостью истинного горизонта. Линия EW соответствует направлениям из места наблюдателя на восток (E) и на запад (W).

Наблюдатель, находясь в т. O Земли наблюдает все видимые невооруженным глазом небесные светила как бы проецируемые на воображаемую сферу бесконечно большого радиуса.

Если учесть, что размеры Земли по сравнению с расстоянием до небесных светил бесконечно малы, то можно радиусом Земли пренебречь и считать, что наблюдатель и Земля сливаются в одну точку, которая будет находиться в центре этой сферы.

Для примера: если уменьшить Солнце и ближайшую к нам звезду α Центавра до размеров шариков настольного тенниса (Ø35 мм), то их необходимо (для сохранения масштаба) расположить друг от друга на расстоянии ~ 1.000 км.

Таким образом: из-за малых размеров Земли, в сравнении с расстояниями до звезд $(D_{min} \approx 43 \text{ трлн. км})$ всех наблюдателей, расположенных в разных местах земной поверхности, можно считать находящимися в одной точке, т.е. центре небесной сферы,